GDB tests, Cl & Buildbot BoF

Sergio Durigan Junior
sergiodj@redhat.com



License

» License: Creative Commons Attribution 4.0 International
License (CC-BY-4.0)

> https://creativecommons.org/licenses/by/4.0/


https://creativecommons.org/licenses/by/4.0/

Nomenclature

» Worker: The node that performs the “build”. Usually one per
physical machine/VM. For example, fedora-x86_64-1 or
ubuntu-aarch64.

» Factory: A recipe of how to perform a build.

» Builder: An instance of a factory. For example,
Fedora-x86_64-m64 or
Ubuntu-Aarch64-native-extended-gdbserver-mé64.

» Scheduler: Dispatches jobs to a set of builders. Can be
triggered by specific events like a commit in a repository, a try
build request or like a cronjob.



How was it?

> GDB Buildbot started in 2015 as a personal project.



How was it?

> GDB Buildbot started in 2015 as a personal project.

» We just had 2 machines serving 4 Fedora x86_64 workers at
the time. And no try builds!



How was it?

> GDB Buildbot started in 2015 as a personal project.

» We just had 2 machines serving 4 Fedora x86_64 workers at
the time. And no try builds!

> Initially it stored the test results in a git repository. This
proved too inefficient over time. ..



And now?

» The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).



And now?

» The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

» Most of our builders support try builds!



And now?

» The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

» Most of our builders support try builds!

» 14 workers (11 machines):



And now?

» The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

» Most of our builders support try builds!

» 14 workers (11 machines):

>
| 4
>

>

vy

Sergio (Red Hat): 2 machines (Fedora x86_64)

Alan Hayward (ARM): 2 machines (Ubuntu ARM 32 and 64)
Rainer Orth (CeBiTec.Uni-Bielefeld.DE): 2 machines (Solaris
amd64 and sparcv9)

David Edelsohn: 3 machines (RHEL 7.1 s390x, AIX POWER8
and Debian Jessie s390x)

Edjunior Machado: 1 machine (CentOS 7 PPC64LE)

Mark Wielaard: 1 machine (Fedora s390x)

Kamil Rytarowski: 1 machine (NetBSD amd64)



And now?

» The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

» Most of our builders support try builds!

» 14 workers (11 machines):

» Sergio (Red Hat): 2 machines (Fedora x86_64)

» Alan Hayward (ARM): 2 machines (Ubuntu ARM 32 and 64)

» Rainer Orth (CeBiTec.Uni-Bielefeld. DE): 2 machines (Solaris
amd64 and sparcv9)

» David Edelsohn: 3 machines (RHEL 7.1 s390x, AIX POWERS
and Debian Jessie s390x)

» Edjunior Machado: 1 machine (CentOS 7 PPC64LE)

» Mark Wielaard: 1 machine (Fedora s390x)

» Kamil Rytarowski: 1 machine (NetBSD amd64)

> Test results are stored directly on-disk, and “garbage-collected”
every week (tests older than 4 months are deleted).



How does it work?

Buildbot

Builder 1 Builder 2 Builder 3 Builder N



How does it work? 2

Remove previous build directory
Pull from GDB repository

Copy previous .sum (if not try build)

Configure GDB

Compile GDB

Normal build?

Test GDB (if supported)
Calculate regressions
Save build results

Racy test?

Racy test GDB

Analyze racy tests
Save racy test information



Racy tests handling (or an attempt to)

> We keep a list of racy tests (detected weekly through the racy
build analysis).



Racy tests handling (or an attempt to)

> We keep a list of racy tests (detected weekly through the racy
build analysis).

» When a racy build finishes, we include the racy tests in the
xfail file for that builder.



Racy tests handling (or an attempt to)

> We keep a list of racy tests (detected weekly through the racy
build analysis).

» When a racy build finishes, we include the racy tests in the
xfail file for that builder.

» \We then ignore them when doing normal test builds.
However. .. whac-a-mole.



Test analysis (a.k.a. finding regressions)

» Transform the current .sum file into a Python dict:

> { ’gdb.base/testl.exp: mnamel’ : ’PASS’
’gdb.base/testl.exp: name2’ : JFAIL’,

..}



Test analysis (a.k.a. finding regressions)

» Transform the current .sum file into a Python dict:

> { ’gdb.base/testl.exp: mnamel’ : ’PASS’,
’gdb.base/testl.exp: name2’ : JFAIL’,

» Do the same for the previous .sum file.

..}



Test analysis (a.k.a. finding regressions)

» Transform the current .sum file into a Python dict:

> { ’gdb.base/testl.exp: mnamel’ : ’PASS’,
’gdb.base/testl.exp: name2’ : JFAIL’,

» Do the same for the previous .sum file.

> lterate over the current .sum file's dictionary and do:

..}



Test analysis (a.k.a. finding regressions)

» Transform the current .sum file into a Python dict:

> { ’gdb.base/testl.exp: mnamel’ : ’PASS’,
’gdb.base/testl.exp: name2’ : ’FAIL’, ...}

» Do the same for the previous .sum file.

> lterate over the current .sum file's dictionary and do:
» If the current key is XFAIL'ed (i.e., a racy test), ignore it.



Test analysis (a.k.a. finding regressions)

» Transform the current .sum file into a Python dict:

> { ’gdb.base/testl.exp: mnamel’ : ’PASS’,
’gdb.base/testl.exp: name2’ : ’FAIL’, ...}

» Do the same for the previous .sum file.

> lterate over the current .sum file's dictionary and do:
» If the current key is XFAIL'ed (i.e., a racy test), ignore it.

» If the current key exists in the new dict:
» If it has the same value, good (not a regression).
» If it changed from PASS to FAIL, bad. Report as a regression.
> If it changed from FAIL to PASS, good. Update the baseline.



Test analysis (a.k.a. finding regressions)

» Transform the current .sum file into a Python dict:

> { ’gdb.base/testl.exp: mnamel’ : ’PASS’,
’gdb.base/testl.exp: name2’ : ’FAIL’, ...}

» Do the same for the previous .sum file.

> lterate over the current .sum file's dictionary and do:
» If the current key is XFAIL'ed (i.e., a racy test), ignore it.

» If the current key exists in the new dict:

» If it has the same value, good (not a regression).
» If it changed from PASS to FAIL, bad. Report as a regression.
> If it changed from FAIL to PASS, good. Update the baseline.

» If the current key doesn't exist in the new dict:

> If it's a PASS, good. Update the baseline.
> If it's a FAIL, bad. Report as a new failure.



Notifications

» To gdb-testers: whenever we detect a possible regression in an
upstream commit.



Notifications

» To gdb-testers: whenever we detect a possible regression in an
upstream commit.

» To the author: on try builds, or when his/her commit broke
GDB.



Notifications

» To gdb-testers: whenever we detect a possible regression in an
upstream commit.

» To the author: on try builds, or when his/her commit broke
GDB.

» To gdb-patches: when a commit breaks GDB.



Notifications

» To gdb-testers: whenever we detect a possible regression in an
upstream commit.

» To the author: on try builds, or when his/her commit broke
GDB.

» To gdb-patches: when a commit breaks GDB.

» Breakage notifications are usually reliable. Regression
notifications are not (just look at gdb-testers).



Problems and challenges

» Racy testcases. Perhaps the most difficult/persistent problem?



Problems and challenges

» Racy testcases. Perhaps the most difficult/persistent problem?

» Lots of test messages are non-unique. This makes it really
hard to compare test results and find regressions.



Problems and challenges

» Racy testcases. Perhaps the most difficult/persistent problem?

» Lots of test messages are non-unique. This makes it really
hard to compare test results and find regressions.

> Better way to store and retrieve test results (current way is
“enough” for what we need, but it can certainly be improved).
See Serhei's work and Keith's work.



Problems and challenges

» Racy testcases. Perhaps the most difficult/persistent problem?

» Lots of test messages are non-unique. This makes it really
hard to compare test results and find regressions.

> Better way to store and retrieve test results (current way is
“enough” for what we need, but it can certainly be improved).
See Serhei's work and Keith's work.

» make -jN, racy tests and gdb.threads.



