newlisp/qa-specific-tests/qa-factorfibo

107 lines
2.8 KiB
Text
Executable file

#!/usr/bin/newlisp
; Fibonacci series
(define (fibo n)
(let (x 0L y 1L) ; 1 2 3 5 8 13 21
(for (_ 0 n) (++ x (swap y x))) )
)
; Collect all prime numbers up to N
; using sieve algorithm
(define (primes N)
(let (p (array N (sequence 0 N)))
(for (i 2 (- N 1))
(when (p i) (let (j i)
(while (< (* i j) N)
(setf (p (* i j)) nil)
(++ j)))))
; take all but 0 and 1
(2 (filter true? (array-list p)))
)
)
; Factorization into primes for big integers
; for integers up to 64-bit use the built-in
; factor function.
(define (big-factor n , d k fact-list)
(set 'n (bigint n))
(set 'd 2L 'k 0)
(while (zero? (% n d))
(set 'n (/ n d))
(++ k) )
(dotimes (i k) (push d fact-list -1))
(set 'd 3L 'k 0)
(while (<= (* d d) n)
(while (zero? (% n d))
(set 'n (/ n d))
(++ k) )
(dotimes (i k) (push d fact-list -1))
(set 'k 0)
(++ d 2L))
(when (> n 1) (push n fact-list -1))
fact-list
)
; Use precollected primes wne factoring.
; Speed gains vary greatly from a few percent
; to 10 times as fast. The higher the prime factors
; the less is the speed advantage.
; Collect all primes up to a million
(define (collect-primes)
(println "collecting all primes up to a million ...")
(set 'mprimes (map bigint (primes 1000000)))
(set 'mprimes (array (length mprimes) mprimes))
(println (length mprimes) " primes found")
)
; Primes are only collected once for the first
; invocation of the function.
(define (bfactor n , d k i np fact-list)
(set 'n (bigint n))
(unless mprimes (collect-primes))
(set 'd 2L 'k 0)
(while (zero? (% n d))
(set 'n (/ n d))
(++ k) )
(dotimes (i k) (push d fact-list -1))
(set 'd (mprimes 1) 'k 0 'i 0 'np (- (length mprimes) 1))
(while (<= (* d d) n)
(while (zero? (% n d))
(set 'n (/ n d))
(++ k) )
(dotimes (i k) (push d fact-list -1))
(set 'k 0)
(if (< i np)
(set 'd (mprimes (++ i)))
(++ d 2L))
)
(when (> n 1) (push n fact-list -1))
fact-list
)
; Calculate fibonacci numbers from 1 to N and factorize them.
(set 'N (int (main-args -1) 100))
(for (i 1 N)
(set 'f (fibo i))
(set 'duration (time (set 'facts (bfactor f))))
(println "fibo " i " " f " -> " (if (= 1 (length facts)) "PRIME" facts) " " duration "ms")
(unless (= f (apply * facts 2))
(println ">>>>> ERROR factoring fibo " i " " f " -> " facts)
(exit))
(inc total-duration duration)
)
(println "Total duration: " (div total-duration 1000) " seconds")
(exit)
;; eof