
GDB tests, CI & Buildbot BoF

Sergio Durigan Junior
sergiodj@redhat.com



License

I License: Creative Commons Attribution 4.0 International
License (CC-BY-4.0)

I https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/


Nomenclature

I Worker: The node that performs the �build�. Usually one per
physical machine/VM. For example, fedora-x86_64-1 or
ubuntu-aarch64.

I Factory: A recipe of how to perform a build.

I Builder: An instance of a factory. For example,
Fedora-x86_64-m64 or
Ubuntu-Aarch64-native-extended-gdbserver-m64.

I Scheduler: Dispatches jobs to a set of builders. Can be
triggered by speci�c events like a commit in a repository, a try

build request or like a cronjob.



How was it?

I GDB Buildbot started in 2015 as a personal project.

I We just had 2 machines serving 4 Fedora x86_64 workers at
the time. And no try builds!

I Initially it stored the test results in a git repository. This
proved too ine�cient over time. . .



How was it?

I GDB Buildbot started in 2015 as a personal project.

I We just had 2 machines serving 4 Fedora x86_64 workers at
the time. And no try builds!

I Initially it stored the test results in a git repository. This
proved too ine�cient over time. . .



How was it?

I GDB Buildbot started in 2015 as a personal project.

I We just had 2 machines serving 4 Fedora x86_64 workers at
the time. And no try builds!

I Initially it stored the test results in a git repository. This
proved too ine�cient over time. . .



And now?

I The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

I Most of our builders support try builds!

I 14 workers (11 machines):
I Sergio (Red Hat): 2 machines (Fedora x86_64)
I Alan Hayward (ARM): 2 machines (Ubuntu ARM 32 and 64)
I Rainer Orth (CeBiTec.Uni-Bielefeld.DE): 2 machines (Solaris

amd64 and sparcv9)
I David Edelsohn: 3 machines (RHEL 7.1 s390x, AIX POWER8

and Debian Jessie s390x)
I Edjunior Machado: 1 machine (CentOS 7 PPC64LE)
I Mark Wielaard: 1 machine (Fedora s390x)
I Kamil Rytarowski: 1 machine (NetBSD amd64)

I Test results are stored directly on-disk, and �garbage-collected�
every week (tests older than 4 months are deleted).



And now?

I The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

I Most of our builders support try builds!

I 14 workers (11 machines):
I Sergio (Red Hat): 2 machines (Fedora x86_64)
I Alan Hayward (ARM): 2 machines (Ubuntu ARM 32 and 64)
I Rainer Orth (CeBiTec.Uni-Bielefeld.DE): 2 machines (Solaris

amd64 and sparcv9)
I David Edelsohn: 3 machines (RHEL 7.1 s390x, AIX POWER8

and Debian Jessie s390x)
I Edjunior Machado: 1 machine (CentOS 7 PPC64LE)
I Mark Wielaard: 1 machine (Fedora s390x)
I Kamil Rytarowski: 1 machine (NetBSD amd64)

I Test results are stored directly on-disk, and �garbage-collected�
every week (tests older than 4 months are deleted).



And now?

I The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

I Most of our builders support try builds!

I 14 workers (11 machines):

I Sergio (Red Hat): 2 machines (Fedora x86_64)
I Alan Hayward (ARM): 2 machines (Ubuntu ARM 32 and 64)
I Rainer Orth (CeBiTec.Uni-Bielefeld.DE): 2 machines (Solaris

amd64 and sparcv9)
I David Edelsohn: 3 machines (RHEL 7.1 s390x, AIX POWER8

and Debian Jessie s390x)
I Edjunior Machado: 1 machine (CentOS 7 PPC64LE)
I Mark Wielaard: 1 machine (Fedora s390x)
I Kamil Rytarowski: 1 machine (NetBSD amd64)

I Test results are stored directly on-disk, and �garbage-collected�
every week (tests older than 4 months are deleted).



And now?

I The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

I Most of our builders support try builds!

I 14 workers (11 machines):
I Sergio (Red Hat): 2 machines (Fedora x86_64)
I Alan Hayward (ARM): 2 machines (Ubuntu ARM 32 and 64)
I Rainer Orth (CeBiTec.Uni-Bielefeld.DE): 2 machines (Solaris

amd64 and sparcv9)
I David Edelsohn: 3 machines (RHEL 7.1 s390x, AIX POWER8

and Debian Jessie s390x)
I Edjunior Machado: 1 machine (CentOS 7 PPC64LE)
I Mark Wielaard: 1 machine (Fedora s390x)
I Kamil Rytarowski: 1 machine (NetBSD amd64)

I Test results are stored directly on-disk, and �garbage-collected�
every week (tests older than 4 months are deleted).



And now?

I The master runs in a dedicated VM at OSCI (Open Source
Community Infrastructure).

I Most of our builders support try builds!

I 14 workers (11 machines):
I Sergio (Red Hat): 2 machines (Fedora x86_64)
I Alan Hayward (ARM): 2 machines (Ubuntu ARM 32 and 64)
I Rainer Orth (CeBiTec.Uni-Bielefeld.DE): 2 machines (Solaris

amd64 and sparcv9)
I David Edelsohn: 3 machines (RHEL 7.1 s390x, AIX POWER8

and Debian Jessie s390x)
I Edjunior Machado: 1 machine (CentOS 7 PPC64LE)
I Mark Wielaard: 1 machine (Fedora s390x)
I Kamil Rytarowski: 1 machine (NetBSD amd64)

I Test results are stored directly on-disk, and �garbage-collected�
every week (tests older than 4 months are deleted).



How does it work?



How does it work? 2



Racy tests handling (or an attempt to)

I We keep a list of racy tests (detected weekly through the racy
build analysis).

I When a racy build �nishes, we include the racy tests in the
xfail �le for that builder.

I We then ignore them when doing normal test builds.
However. . . whac-a-mole.



Racy tests handling (or an attempt to)

I We keep a list of racy tests (detected weekly through the racy
build analysis).

I When a racy build �nishes, we include the racy tests in the
xfail �le for that builder.

I We then ignore them when doing normal test builds.
However. . . whac-a-mole.



Racy tests handling (or an attempt to)

I We keep a list of racy tests (detected weekly through the racy
build analysis).

I When a racy build �nishes, we include the racy tests in the
xfail �le for that builder.

I We then ignore them when doing normal test builds.
However. . . whac-a-mole.



Test analysis (a.k.a. �nding regressions)

I Transform the current .sum �le into a Python dict:
I { 'gdb.base/test1.exp: name1' : 'PASS',

'gdb.base/test1.exp: name2' : 'FAIL', ...}

I Do the same for the previous .sum �le.

I Iterate over the current .sum �le's dictionary and do:
I If the current key is XFAIL'ed (i.e., a racy test), ignore it.

I If the current key exists in the new dict:
I If it has the same value, good (not a regression).
I If it changed from PASS to FAIL, bad. Report as a regression.
I If it changed from FAIL to PASS, good. Update the baseline.

I If the current key doesn't exist in the new dict:
I If it's a PASS, good. Update the baseline.
I If it's a FAIL, bad. Report as a new failure.



Test analysis (a.k.a. �nding regressions)

I Transform the current .sum �le into a Python dict:
I { 'gdb.base/test1.exp: name1' : 'PASS',

'gdb.base/test1.exp: name2' : 'FAIL', ...}

I Do the same for the previous .sum �le.

I Iterate over the current .sum �le's dictionary and do:
I If the current key is XFAIL'ed (i.e., a racy test), ignore it.

I If the current key exists in the new dict:
I If it has the same value, good (not a regression).
I If it changed from PASS to FAIL, bad. Report as a regression.
I If it changed from FAIL to PASS, good. Update the baseline.

I If the current key doesn't exist in the new dict:
I If it's a PASS, good. Update the baseline.
I If it's a FAIL, bad. Report as a new failure.



Test analysis (a.k.a. �nding regressions)

I Transform the current .sum �le into a Python dict:
I { 'gdb.base/test1.exp: name1' : 'PASS',

'gdb.base/test1.exp: name2' : 'FAIL', ...}

I Do the same for the previous .sum �le.

I Iterate over the current .sum �le's dictionary and do:

I If the current key is XFAIL'ed (i.e., a racy test), ignore it.

I If the current key exists in the new dict:
I If it has the same value, good (not a regression).
I If it changed from PASS to FAIL, bad. Report as a regression.
I If it changed from FAIL to PASS, good. Update the baseline.

I If the current key doesn't exist in the new dict:
I If it's a PASS, good. Update the baseline.
I If it's a FAIL, bad. Report as a new failure.



Test analysis (a.k.a. �nding regressions)

I Transform the current .sum �le into a Python dict:
I { 'gdb.base/test1.exp: name1' : 'PASS',

'gdb.base/test1.exp: name2' : 'FAIL', ...}

I Do the same for the previous .sum �le.

I Iterate over the current .sum �le's dictionary and do:
I If the current key is XFAIL'ed (i.e., a racy test), ignore it.

I If the current key exists in the new dict:
I If it has the same value, good (not a regression).
I If it changed from PASS to FAIL, bad. Report as a regression.
I If it changed from FAIL to PASS, good. Update the baseline.

I If the current key doesn't exist in the new dict:
I If it's a PASS, good. Update the baseline.
I If it's a FAIL, bad. Report as a new failure.



Test analysis (a.k.a. �nding regressions)

I Transform the current .sum �le into a Python dict:
I { 'gdb.base/test1.exp: name1' : 'PASS',

'gdb.base/test1.exp: name2' : 'FAIL', ...}

I Do the same for the previous .sum �le.

I Iterate over the current .sum �le's dictionary and do:
I If the current key is XFAIL'ed (i.e., a racy test), ignore it.

I If the current key exists in the new dict:
I If it has the same value, good (not a regression).
I If it changed from PASS to FAIL, bad. Report as a regression.
I If it changed from FAIL to PASS, good. Update the baseline.

I If the current key doesn't exist in the new dict:
I If it's a PASS, good. Update the baseline.
I If it's a FAIL, bad. Report as a new failure.



Test analysis (a.k.a. �nding regressions)

I Transform the current .sum �le into a Python dict:
I { 'gdb.base/test1.exp: name1' : 'PASS',

'gdb.base/test1.exp: name2' : 'FAIL', ...}

I Do the same for the previous .sum �le.

I Iterate over the current .sum �le's dictionary and do:
I If the current key is XFAIL'ed (i.e., a racy test), ignore it.

I If the current key exists in the new dict:
I If it has the same value, good (not a regression).
I If it changed from PASS to FAIL, bad. Report as a regression.
I If it changed from FAIL to PASS, good. Update the baseline.

I If the current key doesn't exist in the new dict:
I If it's a PASS, good. Update the baseline.
I If it's a FAIL, bad. Report as a new failure.



Noti�cations

I To gdb-testers: whenever we detect a possible regression in an
upstream commit.

I To the author: on try builds, or when his/her commit broke
GDB.

I To gdb-patches: when a commit breaks GDB.

I Breakage noti�cations are usually reliable. Regression
noti�cations are not (just look at gdb-testers).



Noti�cations

I To gdb-testers: whenever we detect a possible regression in an
upstream commit.

I To the author: on try builds, or when his/her commit broke
GDB.

I To gdb-patches: when a commit breaks GDB.

I Breakage noti�cations are usually reliable. Regression
noti�cations are not (just look at gdb-testers).



Noti�cations

I To gdb-testers: whenever we detect a possible regression in an
upstream commit.

I To the author: on try builds, or when his/her commit broke
GDB.

I To gdb-patches: when a commit breaks GDB.

I Breakage noti�cations are usually reliable. Regression
noti�cations are not (just look at gdb-testers).



Noti�cations

I To gdb-testers: whenever we detect a possible regression in an
upstream commit.

I To the author: on try builds, or when his/her commit broke
GDB.

I To gdb-patches: when a commit breaks GDB.

I Breakage noti�cations are usually reliable. Regression
noti�cations are not (just look at gdb-testers).



Problems and challenges

I Racy testcases. Perhaps the most di�cult/persistent problem?

I Lots of test messages are non-unique. This makes it really
hard to compare test results and �nd regressions.

I Better way to store and retrieve test results (current way is
�enough� for what we need, but it can certainly be improved).
See Serhei's work and Keith's work.

I make -jN, racy tests and gdb.threads.



Problems and challenges

I Racy testcases. Perhaps the most di�cult/persistent problem?

I Lots of test messages are non-unique. This makes it really
hard to compare test results and �nd regressions.

I Better way to store and retrieve test results (current way is
�enough� for what we need, but it can certainly be improved).
See Serhei's work and Keith's work.

I make -jN, racy tests and gdb.threads.



Problems and challenges

I Racy testcases. Perhaps the most di�cult/persistent problem?

I Lots of test messages are non-unique. This makes it really
hard to compare test results and �nd regressions.

I Better way to store and retrieve test results (current way is
�enough� for what we need, but it can certainly be improved).
See Serhei's work and Keith's work.

I make -jN, racy tests and gdb.threads.



Problems and challenges

I Racy testcases. Perhaps the most di�cult/persistent problem?

I Lots of test messages are non-unique. This makes it really
hard to compare test results and �nd regressions.

I Better way to store and retrieve test results (current way is
�enough� for what we need, but it can certainly be improved).
See Serhei's work and Keith's work.

I make -jN, racy tests and gdb.threads.


